
Application of Machine Learning Algorithms to Smartphone Satellite Navigation Data for Precise Positioning
Karolina Tchilinguirova, Supervisor: Sunil Bisnath

GNSS Lab, Deparment of Earth and Space Enginnering, Lassonde School or Enginnering, York Univeristy

Introduction
 Smartphone-based navigation has become an indispensable tool for most
people. Despite the advanced technology squeezed into modern smartphones,
the Global Navigation Satellite Systems (GNSS) antennas and chipsets are low-
cost, leading to significant positional accuracy limitations. Thus, software plays
a major role in enhancing positioning accuracy caused by the nature of the low-
cost chipsets combined with environment satellite signal blockages.
 Since artificial intelligence is on the rise and impacting all industries, this
project aims to explore the utility of machine learning (ML) algorithms in im-
proving the positioning accuracy of smartphones. This is approached through a
preliminary investigation of the capabilities of machine learning algorithms to
predict the precision of positioning data produced by a smartphone.
 This research can lead to implementing ML into smartphone position pro-
cessing to improve user accuracy while maintaining the current hardware’s low
cost and small size. This project aligns with the United Nations’ 9th Sustainable
Development Goals; Build resilient infrastructure, promote inclusive and sus-
tainable industrialization and foster innovation. Ultimately, satellite navigation
is essential in modern-day society, and working to provide precise positioning
with mass market equipment means building resilient infrastructure for the
global population’s safety and economic development.

 This project aims to learn about the feasibility of implementing AI tools, spe-
cifically machine learning, into the processing of smartphone positioning data
to improve its accuracy for driving navigation. Fig. 1 shows the wide range of er-
rors in smartphone positioning. The smartphone solution is compared against
a corresponding reference (“true”) trajectory coordinates determined with
high-precision equipment. This chart shows that the average smartphone hori-
zontal error is 3.8 meters. During interrupted satellite signals, such as when the
car moves under an overpass or bridge, the error can shoot up beyond 10
meters.

Objective

Figure 1. The plotted horizontal error of the smartphone positioning solution of driven ~20-minute route around the campus of
York University. The “true” value is the trajectory coordinates determined with high-precision equipment mounted on the vehi-
cle. Horizontal error is calculated as the deviation of the smartphone measurements away from the high-precision measure-
ments. Spikes in error are caused by interruptions of the satellite signals when the vehicle passes under bridges. The 95th and
50th percentile errors are included in the table below.

 It was hypothesized that given a driven track dataset of positioning coordi-
nates as measured by a smartphone; ML algorithms would successfully predict
the quality of the positioning measurements. Furthermore, it is hypothesized
that the prediction accuracy will increase if additional information, such as sat-
ellite geometry, is provided to the ML model.

Methods

Data Acquisition

Source a dataset from the GNSS
Lab: ~20 minute driven track
around York University recorded
with Xiaomi Mi 8 Android
smartphone alongside NovAtel
SPAN,high-precision equipment
mounted to the roof of the car.

Smartphone data was preprocessed
with the high -precision data to
calculate the horizontal error.

Smartphone recorded XYZ coordinates
at every 1 second time interval,
position (3D) dilution of precision
(PDOP) measurmment and horizontal
error were extracted from dataset to be
used for this experiment.

Build and Train the ML Models

An IBM machine learning model
workflow using Python and scikit -learn
was utilized for this project.

Reproduce IBM’s results using IBM's
sample data to verify correct code
implementation.

Label the data’s positioning accuracy
using horizontal error:
error >= 95 th percentile (3.3m) -> poor
error >= 50 th percentile (1.9m) -> medium
error < 50th percentile (1.9m) -> good

Split the data into testing (2%) and
training (98%) sets
• Testing data has any labelling data

removed (horizontal error and positioning
accuracy label). Used for testing.

• Training data is used to train the ML
algorithm

Three ML algorithms are trained and
tested; K-Nearest Neighbour, Kernel
Random Forest Classifier, and Support
Vector Machine

Test the Models

The ML algorithms predict the position
accuracy label of each data point in
the testing set.

The predicted labels are compared to
the actual labels (as given by the
horizontal error) to analyze the
effectiveness of the algorithms.

Repeat the ML model building and
testing with an additional attribute
PDOP.

 This experiment was programmed in Python using multiple data science and
machine learning packages, including NumPy, SciKit-Learn, Pandas, and Mat-
plotlib. The workflow follows a basic structure of labelling the data, splitting
the data into two sets; training and testing. Next, the machine learning model is
trained with the training set, followed by an analysis of its effectiveness with the
testing set. More details can be seen in Figure 2.

Three rounds of model building and testing:
 Round 1: The models were only provided the smartphone’s measured XYZ coordinates to
 make predictions.
 Round 2: The models were only provided the smartphone’s measured position dilution of
 precision (PDOP) value to make predicitions.
 Round 3: The models were given both the smartphone’s measured XYZ and PDOP values to
 make predictions.

Figure 2. Detailed veiw of the project workflow
from data acquisition to algorthim analysis.

Results

KNN Predicted – Accuracy: 0.92 RFC Predicted – Accuracy: 0.78 Kernel SVM Predicted – Accuracy: 0.85

Actual Vs Machine Learning Algorithm Predictions Using Only XYZ Coordinate as Inputs
Actual Classification

KNN Predicted – Accuracy: 0.87 RFC Predicted – Accuracy: 0.70 Kernel SVM Predicted – Accuracy: 0.73

Actual Vs Machine Learning Algorithm Predictions Using Only PDOP Values as Inputs
Actual Classification

KNN Predicted – Accuracy: 0.89 RFC Predicted – Accuracy: 0.78 Kernel SVM Predicted – Accuracy: 0.85

Actual Vs Machine Learning Algorithm Predictions Using XYZ and PDOP Values as Inputs
Actual Classification

Conclusion

Plotted XYZ Coordinates of
Smartphone Track Dataset with

Labelled Position Accuracy

 The full dataset used in this study is visually rep-
resented in both two dimensions and three dimen-
sions in Figure 4. Each point in the graph represents
a 1-second measurement taken by the smartphone
along the track. The red, yellow and green coloured
points represent the labelling of data. The calculated
horizontal error is available since this track was simul-
taneously measured with the NovAtel SPAN (high-pre-
cision GNSS equipment). This feature labels the data
points as good, medium or poor in position accuracy.
Position accuracy is the element which the ML models
predict. This data is split into two subsets; the train-
ing and testing sets. The training data is used to train
the ML model, and the testing data is used to compare
against the predictions of the ML model, as shown in
Fig.5, Fig.6 and Fig.7.

Figure. 4. A spatial representation of the
full dataset.

 The following figures each represent a separate round of ML algorithm runs. Each
figure consists of 4 plots; the actual classification (leftmost plot) and the predictions
made by the three different ML models. The actual classification represents the testing
subset of the entire dataset. Therefore, it shows the classification based on the hori-
zontal error. This subset is removed when training the models. The output is the mod-
el’s attempt to predict these actual values. As labelled above each plot, the accuracy
metric states the percentage of correct predictions. Additionally, the errors can be seen
visually when comparing the prediction plots to the leftmost Actual Classification plot.

The dataset is run through three supervised ML Models:
K-Nearest Neighbour (KNN): A class label is assigned on the basis of a majority vote within a proximi-
ty—i.e. the label that is most frequently represented around a given data point is used (IBM).

Random Forest Classifier (RFC):): This algorithm creates a collection of random decisions trees from
subsets of the data. The class label is assigned based on the averaging of these tree’s decisions (IBM).

Kernel Support Vector Machine (SVM): This model maps the data into a high-dimensional feature
space, and the classes are separated by a hyperplane. The class label is assigned based on where the
data point is located within this feature space (IBM).

Good

Poor

Good

Poor

Medium

Medium

 Round 1: In the first round of ML runs, the XYZ coordinates are the only GNSS ar-
tifact used to create predictions. As shown in Fig.5, the KNN algorithm performed the
best of the three, correctly predicting 92% of data points. Its major struggle was push-
ing data too far into the ‘medium’ class, therefore, both overestimating the ‘poor’ mea-
surements and underestimating the ‘good’ measurements. RFC and SVM performed
similarly, with RFC being the least accurate of the three. Both algorithms consistently
overestimate measurements, pushing ‘poor’ into the ‘medium’ class and ‘medium’ into
the ‘good’ class.

 Round 2: In this round of ML runs, the only GNSS artifact used to create predictions
is the position dilution of precision (PDOP). This measurement reflects the geometry of
the satellites. The lower the PDOP, the more favourable the satellite distribution, which
correlates to higher accuracy position measurements (Novatel). As shown in Fig.6, KNN
produced the highest accuracy of the three ML algorithms. KNN produced similar re-
sults to round 1, where data is pushed towards the middle. Additionally, RFC and SVM
produced poor results, where RFC greatly overestimated the ‘good’ class, and SVM
overestimated the ‘medium’ class.

 Round 3: In the final round of ML runs, the ML models used both XYZ coordinates
and PDOP artifacts to form predictions. Following previous rounds, each model’s per-
formance concerning each other was the same; KNN produced the greatest accura-
cy, followed by SVM and RFC, with the lowest prediction accuracy. As shown in Fig.7,
KNN’s prediction slightly favoured the ‘good’ class, with the most significant incorrect
predictions of the ‘poor’ class. RFC significantly favoured the ‘medium’ class, pushing
both ‘poor’ and ‘good’ measurements into the ‘medium’ class. SVM performed similarly
to KNN, with a slightly more significant bias towards the ‘medium’ class.

Figure. 5. The results from the 1st round of ML model runs.

Figure. 6. The results from the 2nd round of ML model runs.

Figure. 7. The results from the 3rd round of ML model runs.

Good
Medium
Poor

Good
Medium
Poor

Good
Medium
Poor

Good
Medium
Poor

Good
Medium
Poor

Good
Medium
Poor

Good
Medium
Poor

Good
Medium
Poor

Good
Medium
Poor

Good
Medium
Poor

Good
Medium
Poor

Good
Medium
Poor

 A summary of this experiment, which highlights the differences in classifica-
tion, is shown in Fig. 8; the closer the bar height is to the actual bars (red), the
more accurate the model is at predicting the correct position accuracy class.
Therefore, the three K-Nearest Neighbour rounds outperformed the other ma-
chine learning models, Random Forest Classifier and Kernal Support Vector Ma-
chine. Surprisingly, the first round of runs that only included the XYZ coordinates
as GNSS artifact inputs for the model predictions performed the best. This is unex-
pected from the initial hypothesis because it was reasoned that adding additional
information relevant to the quality of a positioning measurement would improve
the model’s ability to make correct predictions; however, this pattern was not ob-
served. A potential explanation for this occurrence might result from the strong
geometric interworkings of the KNN algorithm. Since KNN prediction is based on
the distance between points and XYZ are concrete spatial measurements, the dis-
tance between coordinates may be more meaningful than the distance between
coordinates and an arbitrary number in the form of a PDOP measurement.
 This experiment was a preliminary exploration into implementing machine
learning in GNSS applications, specifically in classifying position accuracy mea-
surements of smartphone navigation solutions. This experiment showed that the
ML model, specifically KNN is effective at classifying smartphone positioning ac-
curacy, which can be used to reduce the weight of ‘poor’ measurements and im-
prove the accuracy of positioning solutions. The major limitation of this experi-
ment is that the models classified navigation data which was logged previously,
therefore, leveraging known measurements from both previous and future loca-
tions. This would not be directly transferable to real-world applications as a user’s
future coordinates would be unknown and unavailable for the model’s training.
However, this opens an opportunity for future work where ML models are imple-
mented live, such that the model is updated in real-time and is required to make
predictions based only on a user’s previously logged location. In conclusion, arti-
ficial intelligence applications are growing rapidly across all industries. Its imple-
mentation into GNSS applications will improve satellite navigation, ultimately con-
tributing to building resilient infrastructure for the global population’s safety and
economic development.

References

Figure. 8. Bar graph showing the number of datapoints within each classification from the actual testing dataset compared with each
round and each machine learning algorithm’s predictions.

DOP values for the satellites in the PDP solution. Novatel. (n.d.). https://docs.novatel.com/OEM7/Content/Logs/PDPDOP.htm

BM. (n.d.). How SVM works. https://www.ibm.com/docs/en/spss-modeler/18.2.2?topic=models-how-svm-works

Madhavan, S., & Sturdevant, M. (2019, December 4). Build and test your first machine learning model using Python and scikit-learn. IBM
 developer. https://developer.ibm.com/tutorials/build-and-test-your-first-machine-learning-model-using-python-and-scikit-learn/

Madhavan, S., & Sturdevant, M. (2019, December 4). Learn classification algorithms using Python and scikit-learn. IBM developer.
 https://developer.ibm.com/tutorials/learn-classification-algorithms-using-python-and-scikit-learn/

What is Random Forest?. IBM. (n.d.-a). https://www.ibm.com/topics/random-forest

What is the K-nearest neighbors algorithm?. IBM. (n.d.-b). https://www.ibm.com/topics/knn

